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Supplementary Material 

Materials and Methods 

Phosphoflow normalization 

We analyzed 89 samples across 13 different plates as previously described (33). Fold-

change due to stimulation was computed as the ratio of the cell, cytokine stimulation, 

phospho-protein measure to the raw, un-normalized, cell-phospho-protein matching 

baseline that was measured on the same plate. Fold-change values were then normalized 

by the median fold-change difference of a given cell-cytokine stimulation-phospho-

protein measure within a given plate. We tested each assay for plate dependent 

differences and no significant differences between plates were detected post-day 

normalization. 

 

Gene module construction  

As previously described (33), of a total of 48,771 gene probes in the microarray per 

sample, we first selected 6,234 (standard deviation cutoff 0.24) and subsequently 

normalized their expression by centering and scaling the expression so that each gene’s 

expression across all subjects had euclidean norm equal to 1 for purposes of 

clustering. We utilized hierarchical agglomerative clustering with average linkage, 

euclidean distance and height cutoff of 1.5 to derive 109 modules. For each gene module 

we assigned a set of regulatory genes (regulatory program), based on regression analysis 

of genes in the modules onto expression of transcription factors using Akaike Information 

Criterion (AIC) (70). To achieve this we used a set of candidate regulators as previously 

described (33). Briefly, we performed linear regression with elastic net penalty of each 
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module's expression onto the set of regulators using LARS-EN algorithm with l2 penalty 

weighted by 0.01. The LARS-EN algorithm provides fits of increasing number of 

predictors. In order to select the best model among the outputs of LARS-EN we assessed 

quality of the resulting models by AIC, with sample specific terms weighted by within 

module variance. The fit with the best AIC score was selected for each module. Gene 

modules and their regulatory programs can be accessed at 

http://www.cs.unc.edu/~vjojic/fluy2-upd/.  

 

Cross-validation and feature selection for finding immune-signatures of latent CMV and 

aging 

I. Power analysis 

Given sample size and 6 related tasks of sizes corresponding to classification tasks 

between 4 age/cmv combinations, an effect size exceeding 0.5 is detected with 

probability 73.03%. We synthesized data with randomly distributed weights across 6 

tasks such that rank of weight matrix is 2. We generated 100 such synthetic datasets. We 

run our method 100 times on these datasets. We computed power of our method to detect 

an effect in excess of 0.5.  

II. Regularization procedure 

An integral part of our training algorithm is a procedure for fitting multiple logistic 

regression models with elastic net (71) and nuclear norm (72) penalties. In our case there 

are 6 related tasks that arise from contrasting pairs of populations yCMV, yCMV+, 

oCMV-, oCMV+. The l1 factor from elastic net penalty encourages discovery of concise 

predictors in each of the tasks separately. The nuclear norm penalty promotes reuse of the 
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same predictors across tasks. This is accomplished by lowering the rank of the matrix of 

all predictor weights across all tasks. The optimization cost can be stated as:  
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where C is the number of tasks, p is the number of predictors, nc is the number of samples 

for task c, xc,t  is the vector of predictor values for subject t in task C, and yc,t indicates one 

of the two populations relevant to the task c. In addition to the logistic regression loss, the 

objective above contains three penalties. These penalties are l1, a sum of absolute values 

of predictor weights, ridge, a sum of squares of predictor weights, and nuclear norm, a 

sum of singular values of matrix constructed by stacking predictor weight vectors β for 

the C tasks. Each of these penalties is weighted by a parameter, λ, γ and µ above. This 

objective is optimized using an Alternating Direction Method of Multipliers. We assume 

all of our predictors are standardized to mean 0 and standard deviation 1. The result of 

our fitting procedure is a matrix of predictor weights β of size p x C, with one column per 

task, and vector of task specific intercepts α for the logistic regression model. In practice, 

penalty weights λ, γ and µ in Eq. 1 are set by a data driven procedure, such as cross-

validation. We applied 3-fold cross-validation with the parameters chosen to yield the 

lowest average error across the tasks while using the smallest set of predictors. We did 

not test for normality or for heteroscedasticity since logistic regression does not make 

assumption of normality nor imply equal variance across groups. The computer source 

code can be found at https://github.com/vjojic/CMVAge. 
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Association of SNPs and cell subset frequency 

We first narrowed our analysis to SNPs with minor allele frequency, in our dataset, 

greater than 5% (116,405 SNPs). On this set we performed fisher exact test of association 

between SNP allele and the frequency of CD4+ CD28- cells controlling for CMV 

seropositivity. We performed FDR correction of the resulting p-values.  

 

Gene enrichment analysis  

Genes from each module were explored by using Ingenuity Pathway Analysis (IPA) for 

function enrichments. Data was imported and Core Analysis was performed with the 

following setting: Data Source: Ingenuity Expert Findings; Confidence: Experimentally 

Observed, TarBase, Protein-protein Interactions, Additional interactions; Species: Human. 

Most significant function enrichment for each module were explored in selected modules 

and used for quality control. Functional enrichments with highest significance are 

reported. In addition, all genes in these modules and module regulators with highest 

regression coefficient or with known function were manually curated using a variety of 

sources including PubMed, IPA and BIOBASE Knowledge Library.  
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Supplementary Figures and Tables 

 

 

 

 

Supplementary Figure 1. Study design. Blood samples are obtained before (d0) and 

28±7 days (d28) after a single intramuscular inoculation of the seasonal inactivated 

influenza vaccine. Samples from d0 are used for gene expression analysis, determination 

of serum cytokines and chemokines, and presence of CMV/EBV antibodies, cell subset 

phenotyping and signaling responses to cytokine stimulations on CD4(+) and CD8(+) T 

cells, B cells and monocytes as well as the phosphorylation of PLC-γ and Akt upon BCR 

cross-linking on B cells. Serum samples from d0 and d28 are utilized for determination of 

anti-influenza antibody titers by the hemagglutinin inhibition assay.  
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Supplementary Figure 2. Gating strategy for phosphoflow assays. Phosphorylation of 

STAT proteins before and upon stimulation with cytokines is analyzed using FlowJo 

software by gating on live cells as discriminated by FSC/SSC profiles, then using double 

gating for singlet discrimination, followed cell subset-specific gating. Phosphorylation of 

STAT1, 3, and 5 proteins is analyzed by deconvolution of stimuli-specific gating. 
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Supplementary Figure 3. No significant effect of EBV in immune measures and 

response to influenza vaccine. Multiple regression analysis for a total of 236 features 

against EBV seropositivity, age and sex was performed and significance obtained via 

permutation tests (73). As depicted in the figure the feature with the highest significance 

for EBV is detected at a FDR Q = 0.75 (a). Vaccine responses were measured as the delta 

geometric mean titer for all three strains and standardized for visualization purposes. No 

differences are observed between yEBV- and yEBV+ (b).  
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Supplementary Figure 4. Manhattan plot showing genetic variants that associate 

with CMV-related phenotypic alteration. The frequency of CD4+ CD28- cells, a 

hallmark of CMV infection, was correlated against a restricted set of genetic 

polymorphisms (SNPs) previously identified in several immune-related pathologies (47). 

35 SNPs were significantly associated with the frequency of CD4+ CD28- cells at an FDR 

< 5% (P < 5 × 10-6, FDR Q < 0.05) (dotted line). Notable SNP candidates include those 

in the vicinity of HLA genes, TRAF1, RORA, C5 and VAV1.  
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Supplementary Figure 5. SNAP plot of notable SNPs found to be associated with the 

CD4+ CD28- cell frequency on chromosome 6. On a total of 116,405 SNPs, fisher exact 

test of association between SNP allele and the frequency of CD4+ CD28- cells controlling 

for CMV seropositivity was performed. Figure shows important SNPs on chromosome 6 

close to HLA genes. SNAP plot was generated using 1000 genomes Pilot 1, Panel = CEU, 

r2 threshold = 0.8. 
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Supplementary Figure 6. SNAP plot of notable SNPs found to be associated with the 

CD4+ CD28- cell frequency on chromosome 9. On a total of 116,405 SNPs, fisher exact 

test of association between SNP allele and the frequency of CD4+ CD28- cells controlling 

for CMV seropositivity was performed. A cluster of 27 SNPs spanning a region in 

chromosome 9 from position 122,705,118 to 122,748,094 is located in the vicinity and 

within TRAF1 and 55kb centromeric from C5 is shown. SNAP plot was generated using 

1000 genomes Pilot 1, Panel = CEU, r2 threshold = 0.8. 
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Supplementary Table 1. Subjects’ baseline characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline characteristic Young Y1 Older Y1 Young Y2 Older Y2 Cohort 2 
Age range (median) 20-30 (24.5) 61->89 (78) 22-32 (26) 62->89 (77) 19-44 (27)  
Gender           
     Male 16 (53%) 21 (34%) 16 (64%) 18 (35%) 10 (27%) 
     Female 14 (47%) 40 (66%) 9 (47%) 34 (65%) 27 (73%) 
Cytomegalovirus (+) 57% 59% 55% 60% 51% 
Epstein Barr Virus (+) 53% 67% 57% 65% N/A 

Supplementary Table 1 
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Supplementary Table 2. Immune parameters computationally selected in all six 

classification problems. Red = positive regression coefficient, Blue = negative 

regression coefficient. yCMV- = young cytomegalovirus (-), yCMV+ = young 

cytomegalovirus (+), oCMV- = old cytomegalovirus (-), oCMV+ = old 

cytomegalovirus (+). 

Supplementary Table 2 
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